Fractionator

From the Dyson Sphere Program Wiki
Revision as of 12:20, 8 June 2021 by imported>76561198045853337 (→‎Player Tips & Tricks)
Fractionator
Fractionation Facility
Taking advantage of the high vapor pressure ratio of hydrogen and liquid deuterium at a certain temperature, deuterium is fractionated from liquid hydrogen with a certain separation efficiency. Use a conveyor belt to introduce hydrogen from one side, after fractional distillation, export from the other side, and export the deuterium from the front port.
Icon Fractionator.png
Work Consumption720 kW
Idle Consumption18.0 kW
Made InAssembler
Hand-MakeReplicator
Stack Size30

Icon Fractionator.png
1
3 s
Icon Steel.png
8
Icon Stone Brick.png
4
Icon Glass.png
4
Icon Processor.png
1

Summary

The fractionator takes any conveyor input and output in its side connections, and will transform 1% of the hydrogen going through itself into Deuterium going out of its front connection. In the UI, the left-hand Hydrogen symbol show the input buffer, and the right-hand symbols are the output buffers.


Production Chain

Recipe Building Replicator? Technology
3 s
    

Production Progression Chart

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
 
24
 
24
 
   
   

Player Tips & Tricks

  • The Fractionator recipe is unique in the fact that it is based on percentage of materials moving through the Fractionator. This means the Fractionator necessarily needs one input of Hydrogen, and one output of Hydrogen, and another output of Deuterium. It also means that conversion speed is directly proportional to belt speed (1% of belt speed) and saturation rate of the input & output for Hydrogen.
    • Belt Speed * 0.01 * Saturation Percentage = Deuterium Production Speed
    • A Conveyor Belt Mk.I that is 100% saturated with Hydrogen (6 Hydrogen/s), will allow a single Fractionator to produce 3.6 Deuterium/minute, or 0.06 Deuterium/second
    • A Conveyor Belt Mk.II that is 100% saturated with Hydrogen (12 Hydrogen/s), will allow a single Fractionator to produce 7.2 Deuterium/minute, or 0.12 Deuterium/second
    • A Conveyor Belt Mk.III that is 100% saturated with Hydrogen (30 Hydrogen/s), will allow a single Fractionator to produce 18 Deuterium/minute, or 0.3 Deuterium/second
  • It is useful to build Fractionators in a conveyor loop, with one entry point for Hydrogen. This allows cycling of Hydrogen already on the belt for further conversion to Deuterium, requiring only the replacement of Hydrogen that was converted.
    • Any conveyor loop that is fully saturated with Hydrogen, for any type of Conveyor Belt, can serve up to 100 Fractionators at a time.
    • Note, however, that Fractionators necessarily desaturate the loop, albeit at a low rate, so with a single entry point of Hydrogen, there is approximately a 1% loss per fractionator, which cascades to further Fractionators along the loop.
      • e.g. if there are 10 Fractionators on a Conveyor Belt Mk.III loop, the first will operate at 100% efficiency, processing 0.3 deuterium/s. The second will operate at ~99% efficiency, as the conveyor belt is ~99% saturated, while the third will operate at 98% efficiency due to desaturation by previous fractionators on the loop.
      • As a result, having multiple entry points in the conveyor loop for Hydrogen to replenish saturation, or multiple conveyor loops is recommended.
    • In order to prevent product stacking, the inflowing Hydrogen conveyor must be joined to the conveyor loop in either T-shape or via Splitter with the returning Hydrogen input set as prioritized.


🍪 We use cookies to keep session information to provide you a better experience.