m
Added a bullet point at the bottom of the page concering the energy consumption (which depends on flowrate on stacked belts).
imported>76561198148448684 m (→Player Tips & Tricks: fix error in Total Deuterium Production Speed formula) |
imported>76561198077669600 m (Added a bullet point at the bottom of the page concering the energy consumption (which depends on flowrate on stacked belts).) |
||
Line 96: | Line 96: | ||
**** Example: when passing through 4-stacks of Hydrogen, it must be de-stacked into 4 belts carrying individual items. Each of these belts should be connected with an inflowing belt also carrying individual items, and then assembled back into 4-stacks. | **** Example: when passing through 4-stacks of Hydrogen, it must be de-stacked into 4 belts carrying individual items. Each of these belts should be connected with an inflowing belt also carrying individual items, and then assembled back into 4-stacks. | ||
* Proliferating Hydrogen increases the Fractionator's conversion rate by the Proliferator's {{glow|Production Speedup}} bonus, also applying the Energy Consumption penalty. Passing through the Fractionator does '''not''' remove the Proliferator marks from the Hydrogen unless it gets converted. | * Proliferating Hydrogen increases the Fractionator's conversion rate by the Proliferator's {{glow|Production Speedup}} bonus, also applying the Energy Consumption penalty. Passing through the Fractionator does '''not''' remove the Proliferator marks from the Hydrogen unless it gets converted. | ||
* The energy consumption of a Fractionator depends on the Deuterium output (or equivalently the Hydrogen Input) for Deuterium output rates below or equal to 18/m (full Mk. III Belt with Stack Size 1) the base energy consumption of 720 kW is independent of the output rate as long as it is non-zero. For Deuterium output rates above 18/min the energy consumption is given by 0.06*([Deuterium/m]-6) MW. For example a Fractionator running on a fully stacked Mk. III Belt with 72 Deuterium/m consumes 3.96 MW. When using Proliferators for {{glow|Production Speedup}} bonus the energy consumption rate is increased as usual (20%, 70% and 150% increase when using Mk. I, II., or III. Proliferator respectively). Thus the maximal energy consumption of a single Fractionator is 9.9 MW while producing 144 Deuterium/m on a fully stacked Mk. III belt of Mk. III proliferated Hydrogen. | |||