→Burn Rates
imported>76561198018895007 No edit summary |
imported>76561198041547569 |
||
Line 46: | Line 46: | ||
Example 1: Coal has a energy density of 2.7MJ. take away the efficiency loss (2.7 * 0.8) and you are left with 2.16MJ. Divide that by the thermal generators max production (2.16MJ / 2.16MW) and you get that one piece of coal will burn for one second at full use.<br> | Example 1: Coal has a energy density of 2.7MJ. take away the efficiency loss (2.7 * 0.8) and you are left with 2.16MJ. Divide that by the thermal generators max production (2.16MJ / 2.16MW) and you get that one piece of coal will burn for one second at full use.<br> | ||
Example 2: Hydrogen Fuel Rods has a energy density of 40MJ. take away the efficiency loss (40MJ * 0.8) and you are left with 32MJ. Divide that by the thermal generators max production (32MJ / 2.16MW) and you get that one Fuel Rod will burn for 14.8 seconds at full use.<br> | Example 2: Hydrogen Fuel Rods has a energy density of 40MJ. take away the efficiency loss (40MJ * 0.8) and you are left with 32MJ. Divide that by the thermal generators max production (32MJ / 2.16MW) and you get that one Fuel Rod will burn for 14.8 seconds at full use.<br> | ||
===Fuel Production Costs=== | |||
Since fuel production has its own energy cost, dedicated power production should take into account whether denser crafted fuels are a net gain over the components to make them.<br> | |||
Example 1: Coal has an energy density of 2.7MJ. Coal can be smelted into Energetic Graphite at a 2:1 ratio, which has an energy density of 6.3MJ, 16% more joules. However, smelting Energetic Graphite requires 720 kJ, and the sorters to access the smelter adds ~36 kJ. This leaves a mere 5.6kJ over coal when processed, while increasing the overhead usage. Which requires more thermal generators for the same available wattage. | |||
[[Category:Item]] | [[Category:Item]] | ||
[[Category:Power Facility]] | [[Category:Power Facility]] | ||
[[Category:Building]] | [[Category:Building]] |